Senin, 11 April 2011

FISIKA

FISIKA

Besaran Turunan dan Satuannya Dalam Ilmu Fisika - Fisika
Sat, 13/05/2006 - 7:39pm — godam64

Besaran Turunan adalah besaran yang terbentuk dari satu atau lebih besaran pokok yang ada. Besaran adalah segala sesuatu yang memiliki nilai dan dapat dinyatakan dengan angka.

Misalnya adalah luas yang merupakan hasil turunan satuan panjang dengan satuan meter persegi atau m pangkat 2 (m^2). Luas didapat dari mengalikan panjang dengan panjang.

Berikut ini adalah berbagai contoh besaran turunan sesuai dengan sistem internasional / SI yang diturunkan dari sistem MKS (meter - kilogram - sekon/second) :

- Besaran turunan energi satuannya joule dengan lambang J
- Besaran turunan gaya satuannya newton dengan lambang N
- Besaran turunan daya satuannya watt dengan lambang W
- Besaran turunan tekanan satuannya pascal dengan lambang Pa
- Besaran turunan frekuensi satuannya Hertz dengan lambang Hz
- Besaran turunan muatan listrik satuannya coulomb dengan lambang C
- Besaran turunan beda potensial satuannya volt dengan lambang V
- Besaran turunan hambatan listrik satuannya ohm dengan lambang ohm
- Besaran turunan kapasitas kapasitor satuannya farad dengan lambang F
- Besaran turunan fluks magnet satuannya tesla dengan lambang T
- Besaran turunan induktansi satuannya henry dengan lambang H
- Besaran turunan fluks cahaya satuannya lumen dengan lambang ln
- Besaran turunan kuat penerangan satuannya lux dengan lambang lx

MATEMATIKA

MATEMATIKA

Trigonometri
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Trigonometri (dari bahasa Yunani trigonon = tiga sudut dan metro = mengukur) adalah sebuah cabang matematika yang berhadapan dengan sudut segi tiga dan fungsi trigonometrik seperti sinus, cosinus, dan tangen. Trigonometri memiliki hubungan dengan geometri, meskipun ada ketidaksetujuan tentang apa hubungannya; bagi beberapa orang, trigonometri adalah bagian dari geometri.
Daftar isi
[sembunyikan]

* 1 Sejarah awal
* 2 Trigonometri sekarang ini
* 3 Hubungan fungsi trigonometri
* 4 Penjumlahan
* 5 Rumus sudut rangkap dua
* 6 Rumus sudut rangkap tiga
* 7 Rumus setengah sudut
* 8 Lihat pula

[sunting] Sejarah awal
Awal trigonometri dapat dilacak hingga zaman Mesir Kuno dan Babilonia dan peradaban Lembah Indus, lebih dari 3000 tahun yang lalu. Matematikawan India adalah perintis penghitungan variabel aljabar yang digunakan untuk menghitung astronomi dan juga trigonometri. Lagadha adalah matematikawan yang dikenal sampai sekarang yang menggunakan geometri dan trigonometri untuk penghitungan astronomi dalam bukunya Vedanga, Jyotisha, yang sebagian besar hasil kerjanya hancur oleh penjajah India.
Matematikawan Yunani Hipparchus sekitar 150 SM menyusun tabel trigonometri untuk menyelesaikan segi tiga.
Matematikawan Yunani lainnya, Ptolemy sekitar tahun 100 mengembangkan penghitungan trigonometri lebih lanjut.
Matematikawan Silesia Bartholemaeus Pitiskus menerbitkan sebuah karya yang berpengaruh tentang trigonometri pada 1595 dan memperkenalkan kata ini ke dalam bahasa Inggris dan Perancis.
[sunting] Trigonometri sekarang ini
Ada banyak aplikasi trigonometri. Terutama adalah teknik triangulasi yang digunakan dalam astronomi untuk menghitung jarak ke bintang-bintang terdekat, dalam geografi untuk menghitung antara titik tertentu, dan dalam sistem navigasi satelit.
Bidang lainnya yang menggunakan trigonometri termasuk astronomi (dan termasuk navigasi, di laut, udara, dan angkasa), teori musik, akustik, optik, analisis pasar finansial, elektronik, teori probabilitas, statistika, biologi, pencitraan medis/medical imaging (CAT scan dan ultrasound), farmasi, kimia, teori angka (dan termasuk kriptologi), seismologi, meteorologi, oseanografi, berbagai cabang dalam ilmu fisika, survei darat dan geodesi, arsitektur, fonetika, ekonomi, teknik listrik, teknik mekanik, teknik sipil, grafik komputer, kartografi, kristalografi.
Ada pengembangan modern trigonometri yang melibatkan "penyebaran" dan "quadrance", bukan sudut dan panjang. Pendekatan baru ini disebut trigonometri rasional dan merupakan hasil kerja dari Dr. Norman Wildberger dari Universitas New South Wales. Informasi lebih lanjut bisa dilihat di situs webnya [1].
[sunting] Hubungan fungsi trigonometri

\sin^2 A + \cos^2 A = 1 \,

1 + \tan^2 A = \frac{1}{\cos^2 A} = \sec^2 A\,

1 + \cot^2 A = \csc^2 A \,

\tan A = \frac{\sin A}{\cos A}\,

[sunting] Penjumlahan

\sin (A + B) = \sin A \cos B + \cos A \sin B \,

\sin (A - B) = \sin A \cos B - \cos A \sin B \,

\cos (A + B) = \cos A \cos B - \sin A \sin B \,

\cos (A - B) = \cos A \cos B + \sin A \sin B \,

\tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \,

\tan (A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \,

[sunting] Rumus sudut rangkap dua

\sin 2A = 2 \sin A \cos A \,

\cos 2A = \cos^2 A - \sin^2 A = 2 \cos^2 A -1 = 1-2 \sin^2 A \,

\tan 2A = {2 \tan A \over 1 - \tan^2 A} = {2 \cot A \over \cot^2 A - 1} = {2 \over \cot A - \tan A} \,

[sunting] Rumus sudut rangkap tiga

\sin 3A = 3 \sin A - 4 \sin^3 A \,

\cos 3A = 4 \cos^3 A - 3 \cos A \,

[sunting] Rumus setengah sudut

\sin \frac{A}{2} = \pm \sqrt{\frac{1-\cos A}{2}} \,

\cos \frac{A}{2} = \pm \sqrt{\frac{1+\cos A}{2}} \,

PENJUMLAHAN DUA SUDUT (a + b) sin(a + b) = sin a cos b + cos a sin b cos(a + b) = cos a cos b - sin a sin b tg(a + b ) = tg a + tg b 1 - tg2a SELISIH DUA SUDUT (a - b) sin(a - b) = sin a cos b - cos a sin b cos(a - b) = cos a cos b + sin a sin b tg(a - b ) = tg a - tg b 1 + tg2a SUDUT RANGKAP sin 2a = 2 sin a cos a cos 2a = cos2a - sin2 a = 2 cos2a - 1 = 1 - 2 sin2a tg 2a = 2 tg 2a 1 - tg2a sin a cos a = ½ sin 2a cos2a = ½(1 + cos 2a) sin2a = ½ (1 - cos 2a) Secara umum : sin na = 2 sin ½na cos ½na cos na = cos2 ½na - 1 = 2 cos2 ½na - 1 = 1 - 2 sin2 ½na tg na = 2 tg ½na 1 - tg2 ½na JUMLAH SELISIH DUA FUNGSI YANG SENAMA BENTUK PENJUMLAHAN ® PERKALIAN sin a + sin b = 2 sin a + b cos a - b 2 2 sin a - sin b = 2 cos a + b sin a - b 2 2 cos a + cos b = 2 cos a + b cos a - b 2 2 cos a + cos b = - 2 sin a + b sin a - b 2 2 BENTUK PERKALIAN ® PENJUMLAHAN 2 sin a cos b = sin (a + b) + sin (a - b) 2 cos a sin b = sin (a + b) - sin (a - b) 2 cos a cos b = cos (a + b) + cos (a - b) - 2 sin a cos b = cos (a + b) - sin (a - b) PENJUMLAHAN FUNGSI YANG BERBEDA Bentuk a cos x + b sin x Merubah bentuk a cos x + b sin x ke dalam bentuk K cos (x - a)
a cos x + b sin x = K cos (x-a)
dengan : K = Öa2 + b2 dan tg a = b/a Þ a = ... ? Kuadran dari a ditentukan oleh kombinasi tanda a dan b sebagai berikut

I

II

III

IV
a

+

-

-

+
b

+

+

-

-
keterangan : a = koefisien cos x b = koefisien sin x
PERSAMAAN I. sin x = sin a Þ x1 = a + n.360° x2 = (180° - a) + n.360° cos x = cos a Þ x = ± a + n.360° tg x = tg a Þ x = a + n.180° (n = bilangan bulat)
II. a cos x + b sin x = c a cos x + b sin x = C K cos (x-a) = C cos (x-a) = C/K syarat persamaan ini dapat diselesaikan -1 £ C/K £ 1 atau K² ³ C² (bila K dalam bentuk akar) misalkan C/K = cos b cos (x - a) = cos b (x - a) = ± b + n.360° ® x = (a ± b) + n.360°\tan \frac{A}{2} = \pm \sqrt{\frac{1-\cos A}{1+\cos A}} = \frac {\sin A}{1+\cos A} = \frac {1-\cos A}{\sin A} \,

BIOLOGI

BIOLOGI

Jamur
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Perubahan tertunda ditampilkan di halaman iniBelum Diperiksa
Langsung ke: navigasi, cari
Jamur kancing (champignon) adalah jamur pangan yang paling populer di dunia.

Jamur dalam bahasa Indonesia sehari-hari mencakup beberapa hal yang agak berkaitan. Arti pertama adalah semua anggota kerajaan Fungi dan beberapa organisme yang pernah dianggap berkaitan, seperti jamur lendir dan "jamur belah" (Bacteria). Arti kedua berkaitan dengan sanitasi dan menjadi sinonim bagi kapang. Arti terakhir, yang akan dibahas dalam artikel ini, adalah tubuh buah yang lunak atau tebal dari sekelompok anggota Fungi (terutama Basidiomycetes) yang biasanya muncul dari permukaan tanah atau substrat tumbuhnya. Pengertian terakhir ini berkaitan dengan nilai ekonomi jamur sebagai bahan pangan, sumber racun, atau bahan pengobatan.

Bentuk umum jamur biasanya adalah seperti payung, walaupun ada juga yang tampak seperti piringan.

Beberapa jamur aman dimakan manusia bahkan beberapa dianggap berkhasiat obat, seperti jamur merang (Volvariela volvacea), jamur tiram (Pleurotus), jamur kuping (Auricularia polytricha), jamur kancing atau champignon (Agaricus campestris), dan jamur shiitake (Lentinus edulis). Jamur yang beracun contohnya adalah Amanita muscaria, dan jamur yang dikenal sebagai "destroying angel".

SOSIOLOGI

SOSIOLOGI

SOSIALISASI DAN KEPRIBADIAN

IV SOSIALISASI DAN PEMBENTUKAN KEPRIBADIAN Standar Kompetensi : Menerapkan nilai dan norma dalam proses pembentukan Kepribadian Kompetensi Dasar : Siswa mampu menjelaskan sosialisasi sebagai proses dalam pembentukan kepraibadian Materi selayang pandang Sosialisasi adalah sebuah proses mempelajari dan menghayati norma serta perilaku yang selaras dengan peran peran social yang berlaku dalam suatu masyarakat. Proses sosialisasi adalah proses penyesuaian diri atau adaptasi seseorang terhadap masyarakat atau kehidupan kelompok tempat ia bergaul dalam kehidupannya. Kepribadian adalah keseluruhan perilaku dari seorang individu dengan system kecenderungan tertentu yang berinteraksi dengan serangkaian situasi. Faktor factor pembentuk kepribadian : 1. Warisan biologis 2. lingkungan fisik 3. kebudayaan 4. pengalaman kelompok 5. pengalaman unik Sejumlah manusia dalam suatu masyarakat memiliki pola interaksi yang khas yang disebut kebudayaan, sedangkan kepribadian diwujudkan dalam diri individu dan kelakuan nya. Digambarkan oleh Soekanto, individu dan kepribadian sebagaimana masyarakat dan kebudayaan. Dengan demiki an kepribadian, masyarakat, dan kebudayaan memiliki hub ungan yang sangat erat satu dengan lainnya. Macam macam kepribadian : 1. kepribadian individu 2. kepribadian umum 3. kepribadian barat dan kepribadian timur Terdapat beberapa kebudayaan khusus yang mempengaruhi Kepribadian : 1. kebudayaan khusus atas dasar faktor kedaerahan 2. kebudayaan khusus atas dasar kelas sosial 3. kebudayaan khusus atas dasar agama 4. kebudaayaan khusus atas dasar profesi. — Be your self—n INFO SOSIAL SOSIALISASI ANAK DARI KELUARGA GOLONGAN PEGAWAI TINGGI DISEBUAH KOTA DI INDONESIA. Sejak dilahirkan seorang bayi mungil itu sudah menghadapi beberapa individu. Ia menge nal mengenal lingkungan masyarakat kecil, yang terdiri atas ibu, seorang juru rawat, neneknya dan kakeknya. Dalam kontak dengan ke empat orang tadi,ia memperoleh perlakuan mereka dengan perhatian, kas sayang dan cinta. Maka, dimulaiah belajar kebiasaan pertama, yaitu makan dan tidur pada saat saat yang teratur. Disamping memperoleh perlakuan dan perhatian kasih sayang dari ibunya, ia juga mendapatkan perhatian dari kakak kakaknya Perhatian juga datang dari beberapa saudara tua lain yang kebetulan menumpang pada orang tuanya, juga dari beberapawanita pembantu rumah tangga, yang mempunyai tugas khusus. Ketika memasuki tahun tahun pertama, kedua, ketiga dan seterusnya, dengan susah payah dan disertai banyak konflik, ia harus menyesuaikan segalakeinginan dirinya dengan orang orang tersebut. Interaksi dengan lingkungan sosialnya menjadi lebih intensif, manakala ia mengembangkan bahasanya, sehingga ia dapat mencurahkan isi hatinya dengan lebih jelas. Memasuki masa kanak kanak, ia juga diperkenalkan kepada paman daan bibinya ,dan ke pada para tetangga kenalan ayah dan ibu.nya. Ia juga mulai bermain dengan anak anak tetangga di halaman rumah.Dalam masa itulah ia mulai belajar mengenal berbagai peranan sosial. Kakak kakak dan teman temanya yang lebih tua acapkali dimenangkan dan mempunyai hak lebih banyak. Sering kali ia dipaksa untuk mengikuti kemajuan orang lain dengan berbagai ancaman yang mereka berikan. Memasuki masa sekolah,ia mulai mengenal arti dari perbedaan perbedaan antara jenis kelamin yang lazim dalam masyarakatnya. Jika hasrat cinta tumbuh pada masa remaja, ia harus belajar menyesuaikan diri dengan aturan kebudayaan dan adata istiadat yang terdapat dalammayarakatnya. Demikianlah, dalam proses selanjutnya terdapat aturan aturan yang berpengaruh pada semua individu dalam setiap lingkungan sosialnya. ( prof. Dr. Koenjaraningrat

KIMIA

KIMIA

Larutan Elektrolit dan Non-Elektrolit

Posted February 17, 2009 by KiddinG in Chemistry. 4 Comments

1. LARUTAN

Larutan adalah campuran yang bersifat homogen atau sama. Jika anda melarutkan 2 sendok makan gula putih (pasir) ke dalam segelas air, maka Anda telah mendapatkan larutan gula. Terdapat 2 larutan yaitu; larutan Elektrolit dan Larutan Non-Elektrolit.

1.1 Larutan Elektrolit
Larutan elektrolit merupakan larutan yang dibentuk dari zat elektrolit. Sedangkan zat elektrolit itu sendiri merupakan zat-zat yang di dalam air terurai membentuk ion-ionnya. Zat elektrolit yang terurai sempurna di dalam air disebut Elektrolit Kuat dan larutan yang dibentuknya disebut Larutan Elektrolit Kuat. Zat elektrolit yang hanya terurai sebagian membentuk ion-ionnya di dalam air disebut Elektrolit Lemah dan larutan yang dibentuknya disebut Larutan Elektrolit Lemah.
1.2 Larutan Non-Elektrolit
Larutan non elektrolit merupakan larutan yang dibentuk dari zat non elektrolit. Sedangkan zat non elektrolit itu sendiri merupakan zat-zat yang di dalam air tidak terurai dalam bentuk ion-ionnya, tetapi terurai dalam bentuk molekuler.
1.3 Membedakan Larutan Elektrolit dan Larutan Non Elektrolit
Larutan elektolit dan non elektrolit dapat dibedakan dengan jelas dari sifatnya yaitu penghantaran Listrik.
a). Larutan elektrolit dapat menghantarkan listrik.
Hal ini untuk pertama kalinya diterangkan oleh Svante August Arrhenius(1859-1927), seorang ilmuwan dari Swedia. Arrhenius menemukan bahwa zat elektrolit dalam air akan terurai menjadi partikel-partikel berupa atom atau gugus atom yang bermuatan listrik. Karena secara total larutan tidak bermuatan, maka jumlah muatan positif dalam larutan harus sama dengan muatan negatif.
Atom atau gugus atom yang bermuatan listrik itu dinamai ion. Ion yang bemuatan positif disebut kation, sedangkan ion yang bermuatan negatif disebut anion. Pembuktian sifat larutan elektrolit yang dapat menghantarkan listrik ini dapat diperlihatkan melalui eksperimen. Zat-zat yang tergolong elektrolit yaitu asam, basa, dan garam.
Contoh larutan elektrolit kuat : HCl, HBr, HI, HNO3, dan lain-lain
Contoh larutan elektrolit lemah :CH3COOH, Al(OH)3 dan Na2CO3
b). Larutan non elektrolit tidak dapat menghantarkan listrik.
Adapun larutan non elektrolit terdiri atas zat-zat non elektrolit yang tidak dilarutkan ke dalam air tidak terurai menjadi ion ( tidak terionisasi ). Dalam larutan, mereka tetap berupa molekul yang tidak bermuatan listrik. Itulah sebabnya larutan non elektrolit tidak dapat menghantarkan listrik. Pembuktian sifat larutan non elektrolit yang tidak dapat menghantarkan listrik ini dapat diperlihatkan melalui eksperimen.
Contoh larutan non elektrolit : Larutan Gula (C12H22O11), Etanol (C2H5OH), Urea (CO(NH)2), Glukosa (C6H12O6), dan lain-lain

1.4 Kekuatan Elektrolit
Kekuatan suatu elektrolit ditandai dengan suatu besaran yang disebut derajat ionisasi (α)

Keterangan :
Elektrolit kuat memiliki harga α = 1, sebab semua zat yang dilarutkan terurai menjadi ion.
Elektrolit lemah memiliki harga α<1, sebab hanya sebagian yang terurai menjadi ion.
Adapun non elektrolit memiliki harga α = 0, sebab tidak ada yang terurai menjadi ion.

Elektrolit kuat : α = 1(terionisasi sempurna)
Elektrolit lemah : 0 < α < 1 (terionisasi sebagian)
Non Elektrolit : α = 0 (tidak terionisasi)

1.5 Reaksi Ionisasi Elektrolit Kuat

Larutan yang dapat memberikan lampu terang, gelembung gasnya banyak, maka laurtan ini merupakan elektrolit kuat. Umumnya elektrolit kuat adalah larutan garam. Dalam proses ionisasinya, elektrolit kuat menghasilkan banyak ion maka  = 1 (terurai senyawa), pada persamaan reaksi ionisasi elektrolit kuat ditandai dengan anak panah satu arah ke kanan.

Perlu diketahui pula elektrolit kuat ada beberapa dari asam dan basa.
Contoh :
NaCl (aq)

KI (aq)

Ca(NO3)2(g) Na+(aq) + Cl-(aq)

K+(aq) + I-(aq)

Ca2+(aq) + NO3-(aq)

Di bawah ini diberikan kation dan anion yang dapat membentuk elektrolit kuat.
Kation : Na+, L+, K+, Mg2+, Ca2+, Sr2+, Ba2+, NH4+
Anion : Cl-, Br-, I-, SO42-, NO3-, ClO4-, HSO4-, CO32-, HCO32-

Cobalah Anda buatkan 5 macam garam lengkap dengan reaksi ionisasinya sesuai dengan kation dan anion pembentuknya seperti di bawah ini.
No. Kation dan Anion Rumus Senyawa Reaksi Kimia
1.
2.
3.
4.
5.
Mg2+Br-
Na+SO42-
Ca2+ClO4-
Ba2+NO32-
NH4+Cl-

Jawaban :
Mg2+
Br-
MgBr2
Mg2+ + 2Br-
Na+
SO42-
Na2SO4
2Na+ + SO42-
Ca2+
ClO4-
Ca(ClO4)4
Ca2+ + 2ClO4-
Ba2+
NO32-
Ba(NO3)2
Ba2+ + 2NO3-
NH4+
Cl-
NH4Cl
NH4+ + Cl-

1.6 Reaksi Ionisasi Elektrolit Lemah

Larutan yang dapat memberikan nyala redup ataupun tidak menyala, tetapi masih terdapat gelembung gas pada elektrodanya maka larutan ini merupakan elekrtolit lemah. Daya hantarnya buruh dan memiliki á (derajat ionisasi) kecil, karena sedikit larutan yang terurai (terionisasi). Makin sedikit yang terionisasi, makin lemah elektrolit tersebut. Dalam persamaan reaksi ionisasi elektrolit lemah ditandai dengan panah dua arah (bolak-balik) artinya tidak semua molekul terurai (ionisasi tidak sempurna)
Contoh:
CH3COOH(aq)

NH4OH(g) CH3COO-(aq) + H+(aq)

NH4+(aq) + OH-(aq)

Di bawah ini diberikan beberapa larutaan elektrolit lemah, tuliskanlah reaksi ionisasinya.
a. H2S(aq)
b. H3PO4 (aq)
c. HF(g) d. HCOOH(aq)
e. HCN(aq)
Jawaban :
a. H2S(aq)

b. H3PO4 (aq)

c. HF(g)

d. HCOOH(aq)

e. HCN(aq) 2H+(aq) + S2-(aq)

3H+(aq) + PO43-(aq)

H+(aq) + F-(aq)

H+(aq) + HCOO+(aq)

H+(aq) + CN-(aq)

2. Cara Larutan Elektrolit Menghantarkan Arus Listrik

Pada tahun 1884, Svante Arrhenius, ahli kimia terkenal dari Swedia mengemukakan teori elektrolit yang sampai saat ini teori tersebut tetap bertahan padahal ia hampir saja tidak diberikan gelar doktornya di Universitas Upsala, Swedia, karena mengungkapkan teori ini. Menurut Arrhenius, larutan elektrolit dalam air terdisosiasi ke dalam partikel-partikel bermuatan listrik positif dan negatif yang disebut ion (ion positif dan ion negatif) Jumlah muatan ion positif akan sama dengan jumlah muatan ion negatif, sehingga muatan ion-ion dalam larutan netral. Ion-ion inilah yang bertugas mengahantarkan arus listrik.

” Larutan elektrolit dapat menghantarkan listrik karena mengandung ion-ion yang dapat bergerak bebas. Ion-ion itulah yang menghantarkan arus listrik melalui larutan”.
Larutan yang dapat menghantarkan arus listrik disebut larutan elektrolit.
Larutan ini memberikan gejala berupa menyalanya lampu atau timbulnya gelembung gas dalam larutan.
Larutan elektrolit mengandung partikel-partikel yang bermuatan (kation dan anion). Berdasarkan percobaan yang dilakukan oleh Michael Faraday, diketahui bahwa jika arus listrik dialirkan ke dalam larutan elektrolit akan terjadi proses elektrolisis yang menghasilkan gas. Gelembung gas ini terbentuk karena ion positif mengalami reaksi reduksi dan ion negatif mengalami oksidasi. Contoh, pada laruutan HCl terjadi reaksi elektrolisis yang menghasilkan gas hidrogen sebagai berikut.

HCl(aq)→ H+(aq) + Cl-(aq)
Reaksi reduksi : 2H+(aq) + 2e- → H2(g)
Reaksi oksidasi : 2Cl-(aq) → Cl2(g) + 2e-
Larutan elektrolit terdiri dari larutan elektrolit kuat contohnya HCl, H2SO4, dan larutan elektrolit lemah contohnya CH3COOH, NH3, H2S.
Larutan elektrolit dapat bersumber dari senyawa ion (senyawa yang mempunyai ikatan ion) atau senyawa kovalen polar (senyawa yang mempunyai ikatan kovalen polar)

Zat elektrolit yang terurai dalam air menjadi ion-ion :
HaCl (s) Na+ (aq) + Cl- (aq)
HCl (g) H+ (aq) + Cl- (aq)
H2SO4 (aq) 2H+ (aq) + SO4 2- (aq)
HaOH (s) Na+ (aq) + OH- (aq)
CH3COOH (l) CH3COO- (aq) + H+ (aq)
Zat non elektrolit yang tidak terurai menjadi ion-ion, tapi tetap berupa molekul
C2H5OH (l) C2H5OH (aq)
CO(NH2)2 (s) CO(NH2)2 (aq)
Reaksi peruraian disebut elektrolisis
Reaksi reduksi : pada katode, electron ditangkap oleh ion
Reaksi oksidasi : pada anode, ion akan melepaskan electron
Berdasarkan pelepasan dan pengikatan oksigen
Reaksi oksidasi : reaksi pengikatan oksigen
Contoh : C6H1206 CO2 + 6H2O
3S + 2KClO3 2KCl + 3SO2
Reaksi Reduksi :Reaksi pelepasan oksigen
Contoh : Fe2O3 + 3CO 2Fe2 + 3CO2
CuO + H2 Cu + H2O

3. Hubungan Keelektrolitan dengan ikatan kimia
3.1 Senyawa Ion

Sebagai contoh dari kegiatan percobaan yang tergolong larutan elektrolit yang berikatan ion adalah garam dapur.

Dapatkah Anda membedakan daya hantar listrik untuk garam pada saat kristal, lelehan dan larutan?

Cobalah perhatikan uraian berikut.
NaCl adalah senyawa ion, jika dalam keadaan kristal sudah sebagai ion-ion, tetapi ion-ion itu terikat satu sama lain dengan rapat dan kuat, sehingga tidak bebas bergerak. Jadi dalam keadaan kristal (padatan) senyawa ion tidak dapat menghantarkan listrik, tetapi jika garam yang berikatan ion tersebut dalam keadaan lelehan atau larutan, maka ion-ionnya akan bergerak bebas, sehingga dapat menghantarkan listrik.

Pada saat senyawa NaCl dilarutkan dalam air, ion-ion yang tersusun rapat dan terikat akan tertarik oleh molekul-molekul air dan air akan menyusup di sela-sela butir-butir ion tersebut (proses hidasi) yang akhirnya akan terlepas satu sama lain dan bergerak bebas dalam larutan.
Yang termasuk ke dalam senyawa ion adalah senyawa basa dan garam.
NaCl (s) + air Na+ (aq) + Cl-(aq)

Gambar 5. Proses pelarutan padatan kristal

3.2 Senyawa Kovalen

Senyawa kovalen terbagi menjadi senyawa kovalen non polar misalnya : F2, Cl2, Br2, I2, CH4 dan kovalen polar misalnya : HCl, HBr, HI, NH3.
Dari hasil percobaan, hanya senyawa yang berikatan kovalen polarlah yang dapat menghantarkan arus listrik. Bagaimanakah hal ini dapat dijelaskan?

Kalau kita perhatikan, bahwa HCl merupakan senyawa kovalen di atom bersifat polar, pasangan elektron ikatan tertarik ke atom Cl yang lebih elektro negatif dibanding dengan atom H. Sehingga pada HCl, atom H lebih positif dan atom Cl lebih negatif.

Struktur lewis:

Reaksi ionisasi nya adalah sebagai berikut : HCL(aq) H+(aq) + Cl-(aq)
Jadi walaupun molekul HCl bukan senyawa ion, jika dilarutkan ke dalam air maka larutannya dapat menghantarkan arus listrik karena menghasilkan ion-ion yang bergerak bebas.
HCl(g) + H2O(l)

HCl(g)

HCl(g) H3O+(aq) + Cl-(aq)

H3O+ + Cl-(g)

H+(aq) + Cl-(aq)

Apakah HCl dalam keadaan murni dapat menghantarkan arus listrik? Karena HCl dalam keadaan murni berupa molekul-molekul tidak mengandung ion-ion, maka cairan HCl murni tidak dapat menghantarkan arus listrik.

4. Kesimpulan
Dari penjelasan di atas maka dapat disimpulkan bahwa suatu larutan akan dapat menghantarkan listrik apabila lrutan tersebut memiliki ion-ion yang bergerak bebas, tapi apabila ion-ion berbentuk rapat dan kuat, sehingga tidak dapat bergerak bebas maka larutan tersebut tidak dapat menghantarkan listrik.

biologi

BIOLOGI

Keanekaragaman Hayati

Posted February 17, 2009 by KiddinG in Biology. 9 Comments

A. PENGERTIAN KEANEKARAGAMAN HAYATI
Keanekaragaman Hayati adalah keseluruhan variasi berupa bentuk, penampilan, jumlah, dan sifat yang dapat ditemukan pada makhluk hidup.
Setiap saat kita dapat menyaksikan berbagai macam makhluk hidup yang ada di sekitar kita baik di daratan maupun di perairan. Misalnya, dihalaman rumah, kebun, sawah, atau di hutan. Di tempat itu dapat kita jumpai bermacam-macam makhluk hidup mulai dari makhluk yang berukuran kecil seperti semut hingga makhluk berukuran besar seperti burung, ular, atau gajah. Mulai dari yang berwarna gelap hingga makhluk yang berwarna cerah dan menarik.
Begitu juga dengan tumbuhan, kita dapat mengamati tumbuhan didaratan atau di lautan dengan jenis, ukuran, warna dan bentuk yang beragam. Di daratan misalnya dapat kita jumpai rumput, pohon, jambu, durian, salak, apel, dan sebaainya. Di perairan terdapat rumput laut dan jenis tumbuhan lain yang dapat hidup di laut.
Setiap makhluk hidup memiliki ciri dan tempat hidup yang berbda. Melalui pengamatan, kita dapat membedakan jenis-jenis makhluk hidup. Pembedaan makhluk hidup tanpa dibuat berdasarkan bentuk, ukuran, warna, tempat hidup, tingkah laku, cara berkembang biak, dan jenis makanan.
Perbedaan atau keanekaragaman hayati dapat disebabkan oleh faktor abiotik maupun oleh faktor biotik. Perbedaan keadaan udara, cuaca, tanah, kandungan air, dan intensitas cahaya matahari menyebabkan adanya perbedaan hewan dan tumbuhan yang hidup. Hal tersebut mengakibatkan adanya keanekaragaman hayati.
Pada umumnya pola distribusi penyebaran tumbuhan dan hewan dikendalikan oleh faktor abiotik seperti yang telah disebutkan sebelumnya. Perubahan pada faktor abiotik dapat menyebabkan organisme berkembang dan melakukan spesialisasi.

B. TINGKAT KEANEKARAGAMAN HAYATI
Keanekaragaman hayati dapat ditandai dengan adanya makhluk hidup yang beranekaragam. Keanekaragaman makhluk hiduptersebut dapat dilihat dari adanya abiotik dapat menyebabkan organisme berkembang dan melakukan spesialisasi.
1. Keanekaragam Tingkat Ekosistem
Makhluk hidup dalam kehidupan selalu melakukan interaksi dengan lingkungannya, baik dengan lingkungan abiotik maupun lingkungan biotik. Bentuk interaksi tersebut akan membentuk suatu sistem yang dikenal dengan isitilah ekosistem. Keanekaragam Tingkat ekosistem adalah keanekaragaman yang dapat ditemukan di antara ekosistem. Di permukaan bumi susunan biotik dan abiotik pada ekosistem tidak sama. Lingkungan abiotik sangat mempengaruhi keberadaan jenis dan jumlah komponen biotik (makhluk hidu). Wilayah dengan kondisi abiotik berbeda umumnya mengandung komposisi makhluk hidup yang berbeda.
Kondisi lingkungan tempat hidup suatu makhluk hidup sangat beragama keberagaman lingkungan tersebut biasanya dapat menghasilkan jenis makhluk hidup yang beragam pula. Hal demikian dapat berbentuk karena adanya penyesuaian sifat-sifat keturunan secara genetik dengan lingkungan tempat hidupnya. Sebagai komponen biotik, jenis makhluk hidup yang dapat bertahan hidup dalam suatu ekosistem adalah makhluk hidup yang dapat berinteraksi dengan lingkungannya, baik dengan komponen biotik maupun komponen abiotiknya.
Jika susunan komponen biotik berubah, bentuk interaksi akan berubah sehingga ekosistem yang dihasilkan juga berubah.

2. Keanekaragam Tingkat Spesies (Jenis)
Kita dapat mengenal makhluk hidup berdasarkan ciri-ciri yang dimilikinya. Misalnya, melalui pengamatan ciri-ciri morfologi, habitat, cara berkembang biak, jenis makanan, tingkah laku, dan beberapa ciri lain yang dapat diamati.
Keanekaragaman tingkat spesies (jenis) adalah keanekaragaman yang ditemukan di antara organisme yang tergolong dalam jenis yang berbeda, baik yang termasuk dalam satu famili maupun tidak. Misalnya, jika membandingkan tanaman jagung, mangga, dan padi atau di antara bebek, ayam, dan kucing.
Perbedaan yang terdapat di antara organisme berbeda jenis lebih banyak dibandingkan dengan di antara organisme satu jenis. Dua organisme yang berbeda jenis mempunyai perbedaan susunan gen yang lebih banyak daripada yang tergolong dalam satu jenis.

3. Keanekaragam Tingkat Gen
Setiap makhluk memiliki komponen pembawa sifat menurun. Komponen tersebut tersusun atas ribuan faktor kebakaan yang mengatur bagaimana sifat-sifat tersebut diwariskan. Faktor itulah yang sekarang kita kenal sebagai gen. gen terdapat di lokus gen pada kromosom atau di dalam inti sel setiap makhluk hidup. Akan tetapi susunan perangkat gen masing-masing individu dapat berbeda-beda bergantung pada tetua yang menurunkannya. Itulah sebabnya individu-individu yang etrdapat dalam satu jenis dan satu keturunan dapat memiliki ciri-ciri dan sifat yang berbeda. Keanekaragam tingkat gen adalah keanekaragam atau variasi yang dapat ditemukan di antara organisme dalam satu spesies.
Perangkat gen mampu berinteraksi dengan lingkungannya. Dalam hal ini, faktor lingkungan dapat memberi pengaruh terhadap kemunculan ciri atau sifat suatu individu. Misalnya dua individu memiliki perangkat gen yang sama, tetapi hidup di lingkungan yang berbeda maka kedua individu tersebut dapat saja memunculkan ciri dan sifat yang berbeda.

C. MANFAAT KEANEKARAGAMAN HAYATI
Keanekaragaman hayati dapat memberikan manfaat, baik secara ekonomi, ilmu pengetahuan, sosial dan budaya.

1. Manfaat dari Segi Ekonomi
Jenis hewan (fauna) dan tumbuhan (flora) dapat diperbarui dan dimanfaatkan secara berkelanjutan. Beberapa jenis kayu memiliki manfaat bagi kepentingan masyarakay Indonesia maupun untuk kepentingan ekspor. Jenis kayu-kayu tersebut antara lain adalah kayu ramin, gaharu, meranti, dan jati jika di ekspor akan menghasilkan devisa bagi negara. Beberapa tumbuhan juga dapat dijadikan sebagai sumber makanan yang mengandung karbohidrat, protein, vitamin serta ada tumbuhan yang dapat dimanfaatkan sebagai obat-oabatan dan kosmetika. Sumber daya yang berasal dari hewan dapat dimanfaatkan sebagai sumber makanan dan untuk kegiatan industri.
Dua pertiga wilayah Indonesia adalah perairan yang dapat dijadikan sumber daya alam yang bernilai ekonomi. Laut, sungai, dan tambak merupakan sumber-sumber perikanan yang berpotensi ekonomi. Beberapa jenis diantaranya dikenal sebagai sumber bahan makanan yang mengandung protein.

2. Manfaat dari Segi Wisata dan Ilmu Pengetahuan
Kekayaan aneka flora dan fauna sudah sejak lama dimanfaatkan untuk pengembangan ilmu pengetahuan. Hingga saat ini masih banyak jenis hewan dan tumbuhan yang belum dipelajari dan belum diketahui manfaatnya. Dengan demikian keadaan ini masih dapat dimanfaatkan sebagai sarana pengembangan pengetahuan dan penelitian bagi berbagai bidang pengetahuan. Misalnya penelitian mengenai sumber makanan dan obat-obatan yang berasal dari tumbuhan. Umumnya secara langsung manusia menjadikan hewan sebagai objek wisata atau hiburan.

3. Manfaat dari Segi Sosial dan Budaya
Masyarakat Indonesia ada yang menetap di wilayah pegunungan, dataran rendah, maupun dekat dengan wilayah perairan. Masyrakat tersebut telah terbiasa dan menyatu dengan keadaan lingkungan sekitarnya. Kegiatan memanen hasil hutan maupun pertanian merupakan kebiasaan yang khas bagi masyarakat yang tinggal di pegunungan atau dataran tinggi.
Masyarakat tersebut yang hidup berdekatan dengan laut, sungai, dan hutan memiliki aturan tertentu dalam upaya memanfaatkan tumbuhandan hewan. Masyarakat memiliki kepercayaan tersendiri mengenai alam. Dengan adanya aturan-aturan tersebut, keanekaragaman hayati akan terus terjaga kelestariannya.

D. HILANGNYA KEANEKARAGAMAN HAYATI
Saat ini tidak sedikit hutan yang rusak, akibatnya kehidupan hewan di dalamnya akan terganggu.
1. Hilangnya Habitat
Salah satu faktor yang sangat menentukan keberadaan keanekaragaman hayati adalah habitat. Hutan merupakan habitat asli tempat hidup makhluk hidup. Penebangan serta perusakan hutan secara terus-menerus terganggunya ekosistem makhluk hidup dan pada akhirnya keanekaragaman hayati akan berkurang dan hilang.
2. Degradasi Habitat
Polusi merupakan perubahan lingkungan yang menimbulkan pengaruh negatif terhadap kesehatan dan kehidupan makhluk hidup.

3. Spesies-Spesies Pendatang
Kehadiran spesies pendatang dapat mengalahkan atau mendominasi spesies asli. Pada abad ke-19 pembangunan Kanal Erie telah menyebabkan masuknya belut laut ke Danau Agung.

4. Eksploitaso Secara Berlebihan
Eksploitasi sumber daya alam dikatakan berlebihan jika jumlah sumber daya alam yang diambil lebih besar dibandingkan dengan kemamuan memperbarui diri sumber daya alam yang diambil.

E. USAHA PELESTARIAN KEANEKARAGAMAN HAYATI DI INDONESIA
Dalam usaha menjaga kelestarian sumber daya hayati agar tidak punah adalah dengan cara menjaga keutuhan lingkungan tempat hidup makhluk hidup.
Jika sebagian besar masyarakat Indonesia melakukan aktivitas eksploitasi sumber daya hayati secara terus-menerus tanpa diimbangi dengan usaha pelestarian maka dalam waktu yang relatif singkat sumber daya hayati akan punah.

1. Cagar Alam
Cagar alam adalah kawasan perlindungan alam yang memiliki tumbuhan, hewan, dan ekosistem yang khas sehingga perlu dilindungi.
Perkembangan dan pertumbuhan hewan dan tumbuhan, berlangsung secara alami. Sesuai dengan fungsinya cagar alam dapat dimanfaatkan untuk penelitian, pengembangan ilmu pengetahuan, dan wisata.
Terdapat dua jenis cagar alam yaitu cagar alam darat dan cagar alam laut. Di Indonesia cagar alam darat antara lain : Cagar Alam Morowali di Sulawesi tengah, Cagar Alam Nusa Kambangandi Jawa Tengah, Cagar Alam Gunung Papandayan di Jawa Barat, Cagar Alam Dolok Sipirok di Sumatera Utara, Cagar Alam Hutan Pinus Janthoi di NAD (Aceh). Sedangkan cagar alam laut antara lain : Cagar Alam Kepulauan Aru Tenggara di Maluku, Cagar Alam Pulau Anak Krakatau di Lampung, dan Cagar Alam Kepulauan Karimata di Kalimantan Barat.

2. Suaka Margasatwa
Suaka Margasatwa adalah kawasan suaka alam yang memiliki ciri khas berupa keanekaragaman dan keunikan jenis satwa, dan untuk kelangsungan hidup satwa dapat dilakuakn pembinaan terhadap habitatnya.
Di Indonesia suaka margasatwadarat antara lain : Suaka Margasatwa Rawa Singkil di NAD (Aceh), Suaka Margasatwa Padang Sugihan di Sumatera Selatan, Suaka Margasatwa Muara Angke di DKI Jakarta, Suaka Margasatwa Tambora Selatan di Nusa Tenggara Barat, Suaka Margasatwa Lamandau di Kalimantan Tengah, dan Suaka Margasatwa Buton di Sulawesi Tenggara. Sedangkan Suaka Margasatwa laut antara lain : Suaka Margasatwa Kepulauan Panjang di Papua, Suaka Margasatwa Pulau Kassa di Maluku, dan Suaka Margasatwa Foja di Papua.

3. Taman Nasional
Taman nasional adalah kawasan pelestarian alam yang memiliki ekosistem asli yang dikelola dengan sistem zonasi.
Taman nasional dapat dimanfaatkan untuk tujuan penelitian, pengembangan ilmu pengetahuan, dan wisata.
Terdapat dua jenis taman nasional, yaitu taman nasional darat dan taman nasional laut. Taman nasional darat antara lain ; Taman Nasional Leuser di Sumatera Utara, Taman Nasional Ujung Kulon di Banten, Taman Nasional Meru Betiri di Jawa Timur, dan Taman Nasional Bukit Tiga Puluh di Riau. Sedangkan taman nasional laut antara lain ; Taman Nasional Kepulauan Seribu di DKI Jakarta, Taman Nasional Komodo di Nusa Tenggara Timur, dan Taman Nasional Bunaken di Sulawesi Utara.