Sabtu, 19 Maret 2011

MATEMATIKA

peluang

DEFINISI
Dua kejadian A dan B dikatakan bebas jika dan hanya jika
P(AÇB) = P(A). P(B)
Contoh:
Dalam tas I terdapat 4 bola putih dan 2 bola hitam. Dalam tas II terdapat 3 bola putih dan 5 bola hitam.
Sebuah bola diambil dari masing-masing tas.
a) Keduanya berwarna putih
b) Keduanya berwama hitam
Jawab:
Misal
A = bola putih dari tas I
B = bola putih dari tas II
P(A) = 4/6
P(B) = 3/8
   _                  _
P(A) = 2/6      P(B) = 5/8

a. P(A
ÇB) = P (A) . P (B) = 4/6 . 3/8 = 1/4
        _        _         _      _
b. P((A)
Ç P(B)) = P(A). P(B) = 2/6 . 5/8 = 5/24

DEFINISI
Jika A dan B dua kejadian yang saling asing maka berlaku :
P (AUB) = P(A) + P(B)
Contoh:
Pada pelemparan sebuah dada merah (m) dan sebuah dadu putih (p).
Maka: S={(1,1), (1,2), .....,(1,6), (2,1),(2,2),.....(6,6)}
         
n(S) - (6)2 = 36
A : Kejadian muncul m + p = 6 ® {(1,5) (2,4) (3,3) (4,2) (5,1)}
     n(A) = 5
B : Kejadian muncul m + p = 10 ® {(4,6), (5,5), (6,4)}
     n(B) = 3
P(A) = 5/36        P(B) = 3/36
AUB :Kejadian muncul m + p = 6 atau m + p = 10 ®
       { (1,5) (2,4) (3,3) (4,2) (4,6) (5,1) (5,5) (6,4) }
       n(AUB) = 8

P(AUB) = 8/36 = P(A) + P(B)
A dan B kejadian yang saling asing.

DEFINISI

Jika A dan B dua kejadian yang tidak saling asing maka berlaku
P(AUB) = P(A) + P(B) - P(AÇB)
Contoh:
Dalam pelemparan sebuah dada S : { 1, 2, 3, 4, 5, 6}
A : Kejadian muncul sisi dengan banyaknya mata dadu bilangan ganjil =      { 1, 3, 5 } ® n(A) = 3/6
B : Kejadian muncul sisi dengan banyaknya mata dadu bilangan prima =      {2, 3, 5} ® n(B) = 3/6
P(AUB) = 4/6 = P(A) + P(B)
A dan B kejadian yang tidak saling asing.

Tidak ada komentar:

Posting Komentar